Number System Conversion

Number System Conversion is tool for converting numbers between the various bases. In this section, the number system conversion of binary, decimal and hexadecimal number will be focus only.  Repeated division is the most systematic method to convert the number.

Binary Convertor

1)       Convert binary number to decimal number

Step:
I.   Start with the last digit and multiply that digit with 20 .

II.  Continue working from right to left multiply each digit with an incremental increasing     power of 2 (i.e. 21, 22, 23, 24, etc.).

III. Repeat step 2 until all digits have been multiplied.
IV. Add the end result of each worked power of 2 for a final answer.
Example:
a)       1110102



b)       110011.112



2)       Convert binary number to hexadecimal

Step:

I.   Break the Byte into ‘quartets’ from the right hand side.
II. Use the table above to covert each quartet to its Hex equivalent.
Example:

a)   10001001001101112



b)   110011. 11 2



Decimal Convertor

1)       Convert decimal number to binary number

Step:

I.      Divide the decimal number by 2.
II.      Write the remainder (which is either 0 or 1) at the right most position.
III.     Repeat the process of dividing by 2 until the quotient is 0 and keep writing
the remainder after each step of division.
IV.     Write the remainders in reverse order.
Example:

a)       1110



Conversions of Decimal Fractions to Binary Fractions

For converting decimal fractions into binary fractions, we use multiplication. Instead of looking for a remainder we look for an integer.
Step:

I.    Multiply the decimal fraction by 2
II.    If a non-zero integer is generated, record the non-zero integer otherwise record 0.
III.   Remove the non-zero integer and repeat the above steps till the fraction Value becomes 0.
IV.   Write down the number according to the occurrence.
Example:

a)      0.312510



2)       Convert decimal number to hexadecimal number
We divide by 16 instead of 2 or 8. If the remainder is in between 10 to 16, then the number is represented by A to F respectively.
Example:

a)       4510



b)       0.7510



Hexadecimal convertor

1)    Convert hexadecimal number to binary number

Step:

I.    Convert each hexadecimal digit to its 4-bit binary equivalent.
II.   Combine all the binary numbers.
Example:

a)       2D16



b)     2D.C16



2)   Convert hexadecimal number to decimal number

We do the conversion of hexadecimal fractions to decimal fractions in the similar manner as we have done the conversion of binary fractions to decimal fractions. Here weight of bit is 16-1, 16-2…….

Example:

a)      2D16



b)      2D.C16



Previous
Next Post »