Complement Number System

Complement of Binary Number

There are two stage of complement:

– One’s complement / 1’s complement
– Two’s complement / 2’s complement

How to get 1’s complement?

To get 1’s complement, we need to invert each bit in binary numbers.

Means that we need to change 
all 0 to 1 and all 1 to 0.

For example,

By using 8 bits system,
Binary number    = 
1001 1110
1’s complement =
 0110 0001

How to get 2’s complement?

To get 2’s complement, we just need to add +1 to the 1’s complement.

For example,

By using 8 bits system,
Binary number    = 
1001 1110
1’s complement = 
0110 0001
2’s complement = 
0110 0010



Most Significant Bit (MSB)

MSB or sign bits are the first bit from left.
Based on MSB, we can 
distinguish the positive and negative numbers.
If the MSB is 0, then the number is positive.
If the 
MSB is 1, then the number is negative.


The others remaining bits are known as magnitude numbers.
While the least significant bit (LSB) is the right-most bit.

Converting Negative Binary Numbers to Decimal

Now, we will learn how to convert signed negative binary numbers to decimal.
Check the sign bit first before we do the conversion.

Remember: if MSB is 0, the number is positive else if the MSB is 1, the number is negative.

Example 1 
By using 4 bit system, 
convert 1011 to decimal number.

Step 1: check the MSB
Binary number = 1011
MSB = 1, it is a negative number.

Step 2: convert to decimal



Adding the value in bottom row:
– 8 + 2 + 1 = – 5
Hence, the decimal number is – 5

Example 2

By using 8 bit system, convert 1111 0110 to decimal number.

Step 1: check the MSB
Binary number = 1111 0110
MSB = 1, it is a negative number.

Step 2: convert to decimal



Adding the value in bottom row:

– 128 + 64 + 32 + 16 + 4 + 2 = – 10
Hence, the decimal number is – 10

Example 3

By using 8 bit system, convert 0110 0011 to decimal number.

Step 1: check the MSB
Binary number = 0110 0011
MSB = 0, it is a positive number.

Step 2: convert to decimal




Adding the value in bottom row :
64 + 32 + 2 + 1 = 99
Hence, the decimal number is 99.
Examples of Calculation

Example 1:

By using 8 bit system, show how computer use binary to 
calculate 9 + 10.
Step 1: Convert decimal number to binary number.

9   —  0000 1001
10 —  0000 1010

Step 2: Calculation



Example 2:

By using 8 bit system, show how computer use binary to calculate 14 – 5.
We can do 14 – 5 by using addition, that is 
14 + (-5).

Step 1: Convert 14 to binary number.

14 — 0000 1110

Step 2: Convert – 5 to 2’s complement.
5                           — 
0000 0101   
1’s complement  — 
1111 1010   (invert each bit)
2’s complement  — 
1111 1011   (adding +1)
-5                          — 
1111 1011

Step 3: Calculation



Previous
Next Post »